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The problem of behavior of an unsteady surface wave in an inhomogeneous, 
linearly deformable elastic medium is considered, Jnvestigation of the surface 

wave fronts is based on the ray representations of the wave, regarded as a Line 
of discontinuity of the displacement derivatives propagating along the bound- 
ary surface. A system of partial differential equations is reducedusing the 

methods of the theory of discontinuous solutions together with the dynamic, 
kinematic and geometrical conditions of compatibility, to an ordinary differ- 

ential equation in terms of the wave intensity, with the velocity of this wave 
coinciding at every point of the inhomogeneous surface with the Rayleigh vel- 

ocity. This equation is supplem~ted by a system of relations characterizing 

the change in the geometrical parameters of the surface front in the course 
of the propagation. Specific models of the stochastic media are considered 

for which the processes under investigation are Markovian and can be describ- 
ed with help of the methods of the theory of multidimensional Markovian 
stochastic processes, Conditions are established concerning the character of 

the distribution of the surface inhomogeneity, which admit the application 

of the Markovian approximation. When the wave propagate through randomly 

inhomogeneous media, the presence of free boundaries leads to appearance 
of a number of the boundary phenomena sufficiently well defined in some 
boundary zone [l--4], The appearance of waves propagating along the free 

surface is connected with the possibility of existence of inhomogeneous waves 
near the boundary [5-71. The harmonic surface waves in randomly inhomo- 

geneous media were studiedin [8] with help of the approximations of the geo- 
metrical optics (short waves), and in [I.] within the framework of the method 

of effective parameters (long waves). An approach based on the use of the 
Markovian approximations was developed in [9] for investigating the process- 
es of propagation of volume waves. 

1. Let an inhomogeneous isotropic medium the elastic moduli of which depend 
randomly on the coordinates, be bounded by an arbitrary, sufficiently smooth bound- 

ary S. Using an zn -coordinate system attached to the free surface S, we can 

write the dynamic relationships in the form 

F; (Tij - f’Ui” = 0, i = 1, 2, 3 (LI) 

Oij = hV,lL”‘G,j + p (ViUj + VjUi) 
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o..nj r; 0 
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Here u,; denotes the displacement vector, oil is the stress tensor, I+ (P), p (P), 
p (a?) are the elastic moduli and the density of the medium, G,, is the metric 

tensor of the system xn and is chosen as follows: z1 and 2s are the curvilinear 
coordinates on S, tc’ is the distance along the normal in the inward direction, while 

Vf and vj denote the contravariant and covariant tensor differentiation in the 
metric of $. 

The presence of a boundary surface means that inhomogeneous waves may exist 
in the medium. When we say an inhomogeneous, first order wave, we mean by this 
a one-parameter family of directed complex surfaces Z on which the displacements 
are continuous, but their derivatives may have a discontinuity. The dynamic, kine- 
matic and geometrical conditions of compatib~ty all hold on Z . At every point 
of the medium in question the longitudinal and transverse surfaces of discontinuity 
Et% (,% = 1, 2) propagate in the directions of their normals at the rate 

C(I) = {(A + 2P.) / PI”“, C(Z) = @ / P)“:l 

Let us derive the conditions needed for the existence of first order surface waves 
on 8, We use the term ‘*surface wave” to describe a one-parameter family of real 
curves j on which the displacements defmed on S are continuous, while their first 
derivatives have a discontinuity on passing across 1. We denote by [f]crj (k = 

1, 2) the jump in the value of the function f at the surface Zcr), and by [fJs 

the jump in the value of f at the line 1. Here and henceforth the index (1) will 
refer to the relations on the lon~i~dinal wave, and (Z), to relations on the transverse 

wave, The surface waves are constructed in the form of a linear combination of the 
~omog~eous longi~~nal and transverse waves, and as a result of this we seek the 
jump at the surface S in the form of a sum 

VI8 = VI(l) + [fl{Z) (1.2) 

The last two equations of (1. I} yield 

[as.J], .j = 0 

[oii]s = h [Vr~*ls Gij + P ([Vjr+l, -I- V’jmI,) 
(1*3) 

The relations (1.3) with (I.. 2) and the conditions of the first order compatibility [IO] 

lVj%l = wiyj I(& Q$+) = [VflUi] V* I(k) 

where Gl 
vi are the com~n~ts of thenormal to Xfk), all taken into account, are 

written in the form 

$uO’V#~ + p (OjVi + OiVj) 72’ J(l) + p (OjVi + WiVj) ?Z’ /<z) = 0 (1.4) 

We arrange the ;c;“-coordinate.system in such a manner, that the normal vector n 

has the contravariant components (0, 0,l) andchoose the parametric net on S so that 
the coordinate z1 determines the time of propagation along the surface ray, and 

X-J characterizes a point on 1 . Then at the points belonging to S we have 

@’ = @k) = 0 (1*5) 

on tie transverse wave we have OIVi I@) = 0 3 consequently for the covariant and 
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contravariant components of the wave vector we obtain 

or = --kv& 0s = k@ / c (1.6) 
a1 ZZZ --kv& I c, 0s = kvf,,c, k = (~~~*)~~~ 

On the longitudinal wave we have 

u). z= wv!l) 1 t T coi = k&, 0 = (co$l#) (1.7) 

where k and 0 denote the intensities of the volume waves, determined as the module 
of the wave vectors oi”), 

In the course of deriving (1.6), we assumed that at the points belonging to S 

Gil = 3, G,,=1, G,,=O 

where c is the rate of propagation of the front 1 along the ray on S. 
Using (1.5)-( 1.7) we transform (1.4) to the form 

20 (vh&~ + k (vlvl - v~Y~)(~) / c = 0 (1.8) 
w (h + 2p.y3v3)(1) -t- 2kp (Y~v~)(~~ / c = 0 

The physical components Nifkj and the tensor components of the normal vector v(k) 
are connected by the following relations: 

%‘f~) = Ni(kj (Gii)-*‘“t vi(k) = fink) (Gii)“*, k = 1, 2 (1.9) 

Nl(k) = C(I) / CT N3(k) = i {(c(I) / c)2 - 1)“‘, N2(k) = 0, c <c(k) 

Taking (1.9) into account, we can write the conditions of existence of nonzero solu- 
tions of (1.8) in the form 

Equations (1.10) which determines the velwity c at every point of the surface, co- 

incides with the payleigh equation. An analogous result was obtained in [6] for an 

inhomogeneous medium where the representations of the high frequency asymptotics 
were used in somewhat different form. 

Let us write the general solution of the system (1.8) with condition (1. lo), in the 
form 

0= - (+YI - y3ya)(z)x ,’ c, k = 2 (vl~~)~~~~ (1.11) 

and call the quantity *X9 which completely defines the discontinuity at the boundary, 

the intensity of the surface wave. 
Let us see how X varies along the surface ray. To do this, we use the second 

order dynamic conditions ofcompatibility as well as the kinematic and geometrical 
conditions at the surfaces X(X) given in the parametric form by x’ = 2 (&), r&k), 

t) 
foij’L nj = 0, Ioij’Is = k&I [c$j’](k) (1.12) 

f~ij’l(k) z ?b [Vnu’nl(k) Gij f p (lViuj’l(k) f [Vj%‘](k)) 

tv7i%l(k)’ - p [%*.1(k) = 0 (1.13) 

IV’~tjl~k, = h IV’VnU’],,, Gij $- p ([ViViuj]nj + [vjvjui]@J) 
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IVia’jlW= (- Wic(JCJ _t Dwi I Dt) Yj - C~~,g~~~, GXja - gap;Xj@COiC~~ I<*) (1, f4) 

EUl(JC, = @%e&, - ZC~~~~~~ I IX - o&,, 1 LB I(k) 

tv7vkuil = Wly3yh+ + gap@, C& (Y’S*p + YkXfi’) - WigaPgutX~iSktZ&Yn l(Q 

X6’ = @Xi /8$, Xi6 = GiPxgk, gae =: XaiXia 

Here the greek indices assume the values 1 and 2 , the Latin indices 1, 2 and 

3, and the derivative I) / DI(,, is defined in [IO]. 
Relations (I, 13) and (1.14) yieid the expressions for the characteristic second 

order quantities Wik) = [VnVjuij y”vj , and the transport equation for the volume 

waves 

WI = W,VnVi + W,&@XiP - 4%$P~Xifwa~ / (A -t- P) l(1) (1.15) 

W%@ = - O~~,g~a&s - 2Pc(s)~“~~~~c(a?~~~* / (A -I- p) I@) - 

!-WG, I (h + !r”) 

Do: / at - c(J&$ + w$ In c(k) / 2Dt = 0 (1.16) 

Substi~~g (1.14) ainto (1.12) and taking into account (1.15), we obtain a system 

of inhomogeneous equations in Wfs, =(W,w’)& W~~~={WiWi~~~, with a deter- 
minant which is equal to zero by virtue of (1.10). 

The necessary and sufficient condition of existence of a solution of this system 

has the form 

Bi = d k$l {h@L,” + p (Lj” + GkiGj”L,,k)}~k, 

Lji = (Doi / Dt) vj - g%(*)o,$xjfl 

I@ = pql)g=f, w,a + (h I- 2PL),Q 0 I (A + Ph 
I = I”C(2) &!PqI?{@n, a + ~,a%) / @ + pj - F.t,r~~‘~ f th + P))@J 

passing now in the expressions for QI and Qz from the coordinates Y&, $JcJ and 
the derivative L> / Dt lfxJ, associated with the surfaces &k), to a single co- 

ordinate system governed by the geometry of the curve 1 and surface S , and 

replacing o and ‘k by X a with (1.11) and (1.16) taken into account, we obtain 

the following equation for X = 1 x 1 from (1.17): 

(1.18) 

Here d / ds = c_lD / Dt is the derivative along the surface ray and ggJ is the 
corresponding component of the first quadratic form of S characterized by the 

geometry of the surface wave front (divergence of the surface rays). 
Let us write the solution of (1.18) in the form 
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X = Xo (&‘” ,’ &)+(R, /RF”, g$” = g$;’ (0), R. = R (0) 
(1. 19) 

Suppose that 8 is a plane. In this case we have 

-d in & / ds = 4!& dS;t / ds = 2Q= + g2kz2 I c (1.20) 
c,22 / c = tk c),22 + (In c),~~ = IV (s) 

where Q denotes the mean curvature of the cylindrical surface with the directrix 2 

(see c93 1. 
The system (1. H), (1.20) is closed and determines the solution X (s), Q (4, 

gzs (s)for the given initial conditions and velocity c (s) , in a unique manner. 

~troducting the variables 

5s = (Xi X,# (R I Rof2, & = d& I ds (1. 21) 

we obtain the equation for 51 in the form 

(1. 22) 

The system of equations (1. Zl), (1.22) enables us to determine the surface wave inten- 
sity as a function of the length of the ray s. The coordinates of the points lying on 
the ray satisfy the relations 

dr / ds = V, dvi / ds = -gz22i, (In ~1,s (1.23) 

where F = {x1, zs} is the radius vector of the points on S, rl and 5s are the 
Cartesian coordinates of the surface, and v is the normal to 1 in the plane S. 

2. Since the relations (1.18), (1.20) are not linear, the stochastic approach leads 
to an infinite system of infrared momentum equations which require a specified 

procedure for closing [Z, 4,11]. Let us consider the problem of using the Markovian 
approximations to describe the process of propagation of a surface wave. We make 
use of the equations (1.21), (1.22). writing them in the form 

dgi / ds = @i (Ej, qj), i = 1, 2,. . .,Tz, (2.1) 

where qj (s) denote the nonlinear functions of c(s), c(r)(s), qu (s). In the pres- 
ent case these functions are N (s) or In R. We assume that Q (s) are steady 
random functions with rational fractional spectral densities. In this case Q (s) sat- 

isfy the equations 

dqj / ds = Fj (WC) -k Gj (%) qkt i = 1, 2,. . .,nz (2.2) 

<!?k b)> = O, <qk (s) 4;r (8’)) = 6 (s - s’) Akn / n 

where F, and Gj are arbitrary functions, and qk (s) is “white noise”. 
Relations (2.2) which are used to define the model of a stochastically inhomogen- 

ous medium for a particular choice of the functions Fj and Gj can be called, in 
analogy with [12]1 the equation of “shaping filter”. We use this term here in the 
sense that every shaped model filters out some definite frequencies from the perturba- 
tions propagating through it. If Pj E 0, Gj E i, then ?lj (8) is a normal Wiener 

process [12]. 
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Increasing the number of the variables Ei on account of the functions qi (s), 
we shall write the relations (2, l), (2.2) in the form 

dE, / CJIY = &, (Ek) + fm (qr, Fjh.), m = 1, 2,. . ., n, + n2 (2.3) 

For the equations (1.21) and (1.22) and the Wiener model 

d&l ds = q (s), 5, = 4N 

the components of the vector functions Ei. hi and fi are 

(2.4) 

E = G 5s 5dr h = i$ + &, cl, o> 
f = a 0, q(s)) 

(2.5) 

In deriving the system (2.3), (2.5) we made the assumption that the nonlinear fun- 
ction N can be 6 -correlated with the elastic velocities c (s), c(r) (s) and cCaj (a) 

along the ray. As we know [Z, 121, the random quantities satisfying the first order 

differential equations of the type (2.3) are Markovian, and the probability distribution 

of these quantities is described by the Fokker-Plank-Kolmogorov (FPK) equation. 
The FPK equation corresponding to the system (1.22), (2.4) will assume the form 

(P ( ci, s) is the distribution density of the probabilities ci (s) at the point s) 

In the same manner we can obtain stochastic differential equations of the type (2.3) 

from the relations (1.18), (1.20) and (1.23), and write the density distribution equa- 
tion for this system. 

Let us inspect some cases in which the solutions of the FPK equation are simple. 

Let the elastic properties of the medium vary only in the direction of the ray on S, 

and remain constant along the front 1 . Then 

61 (s) = 62, x (s), 8, = l/&1, x (s) = (I--2Ql$l 

where Qaz denotes the curvature of 1 at the initial instant. 
We consider two models of the stochastically inhomogeneous medium 

1) d (In R) / da = q (s); 2) d (In R) / ds = In R + q (s) 

For the model 1) the logarithm of intensity satisfies the stochastic equation 

dH/ds=C&c(s)+q(s), H=lnX 

and the solution of the corresponding equation for the distribution density has the 
form 

P(H,s)= 
H - H, - ?I% In x (s) 

4As (2.7) 

The longitudinal correlation H is calculated as in [9], and this gives 

<H (s) H (s’)) = 2As’ + [H, + Vz In x (s’)]l - 

‘/a [HO + l/a In x (s’)] [In x (s’) - In x (s)], (s > s’) 

By virtue of (2. ‘I), the one-dimensional distribution density P(l) (X, S) can be writ- 
ten in the form 
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P(X,s) = +L. exp - 
i 

fin wx,t - ‘la In x (s)]z 
2XV’nAs 4As 1 

For a model of the medium described by condition Z), we obtain a similar ex- 
pression in which the quantity 2As must be replaced by (38 (s) and 

crf2 (s) = ‘iz [l - exp (-- 4As)l 

We note that in the case of model 2) the intensity of the plane wave has the foilow- 
ing steady state d~~bu~on: 

p(Z) = 0 x& exp {(ln+j’] 
We can see that the intensity of the surface front has a logarithmic-normal distribu- 

tion just as in the case of the volume waves [9]. sstatistical observations of the wave 

intensities in a stochastic medium confirm the feasibility of the models under investiga- 
tion. The defining equations (2.2) contain all classes of media for which the distribu- 
tion densities of certain functions of random velocities C(S), cl fs) and e, (s) can 
be described by the Pearson curves [lZ]. 

Construction of the corresponding models and use of the Markovian approximations 
is based on the introduction of a small parameter expressing the relationship connect- 
ing the scale of variation of certain quantities depending on the elastic coefficients, 

with the characteristic dimensions of the dynamic and geometrical parameters of the 
problem. This condition is expressed mathematically in the assumption of the 6 - 
correlation properties of the functions of the elastic moduli along the ray. The 
d~~~ution of the elastic parameters is, in this case, close to the logari~mic-normal 
which occurs e. g, in the case of rocks. Under the assumptions made, the influence 
of the statistical properties of the inhomogeneity of the medium across the ray was 

excluded. In the case of a stochastic surface S , the statistic1 dependence on the 
coordinates of s must also be taken into account. 
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